

Renewable Diesel made from Sugar Cane

Adilson Liebsch Product Marketing Amyris Brasil

October 2010

Agenda

- Corporate Overview
- Technology
- Renewable Products Diesel de Cana
- Manufacturing and scale-up
- Cost of Amyris Diesel

Amyris

BILL&MELINDA GATES foundation

Renewable fuels and chemicals for a sustainable world

Business Model

TECHNOLOGY

- Pioneering technology platform capable of making >50,000 molecules
- Engineer yeast to convert sugar into hydrocarbons

MANUFACTURING

- Access to lowest cost feedstock (first sugarcane, then cellulosic)
- Lowest carbon footprint
- Owned and 3rd party production assets

PRODUCTS

- No Compromise® fuels
- Family of renewable chemicals
- Anti-malarial ingredient (non-profit initiative)

Integrated renewable products company

Our vision: Enable a bio-based economy...

Traditional oil source

Amyris engineered yeast in fermentation

Wide range of possible products

Anti-malaria drug
non-profit: treat over 200 millior
people annually

Chemicals:

e.g. solvents, formulation ingredients for home care and personal care, polymers, lubricants, F&F, etc.

Diesel

Jet fuel

Amyris today...

Emeryville, California

- ABI headquarters
- labs, pilot plant

Chicago, Illinois

- Amyris Fuels LLC
- Renewable fuels marketing and distribution

Alabama

 sugar cane nursery project

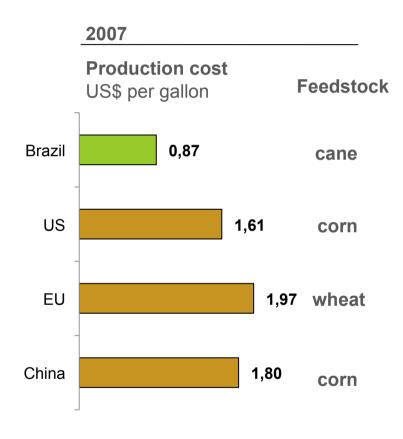
<u>Europe</u>

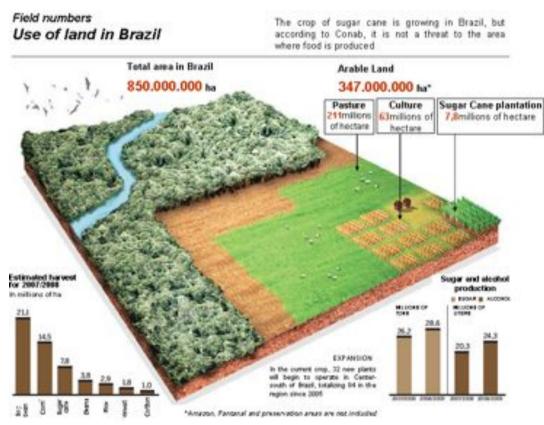
 Anti-malarial partnership with sanofi-aventis

Pradópolis, Brazil

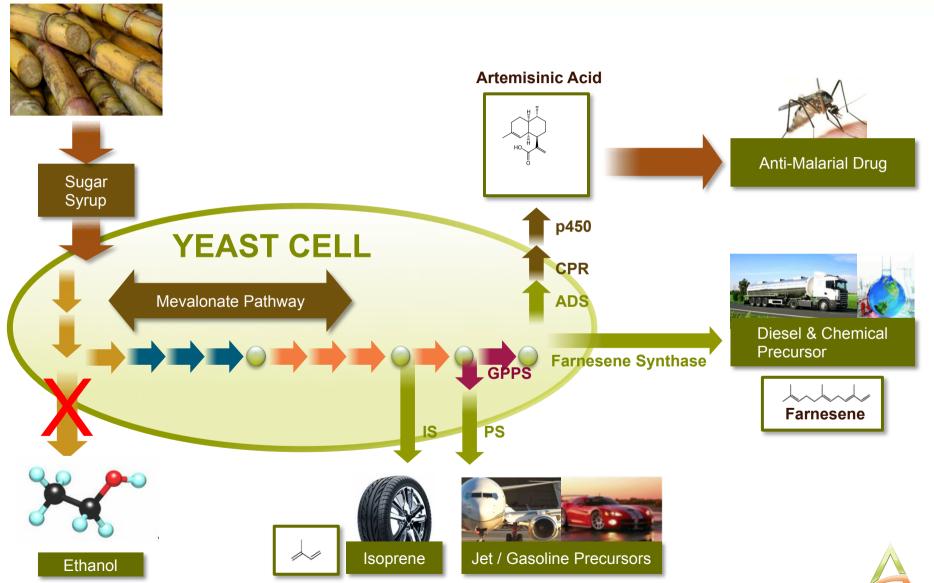
- SMA S.A.
- JV with São Martinho
- Commercial scale production in 2012

Campinas, Brazil

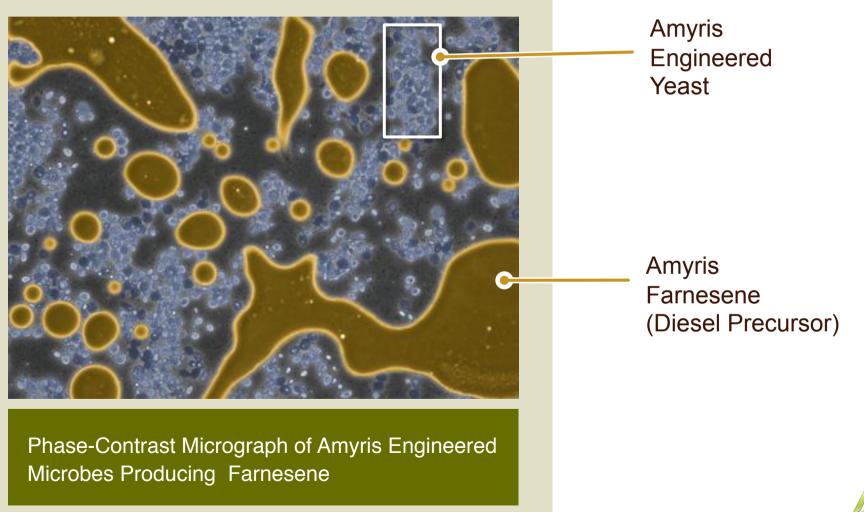

- Amyris Brasil S.A.
- labs, pilot plant & demo facility


... combining great science and innovative business to create a more sustainable world

Why Brazil?

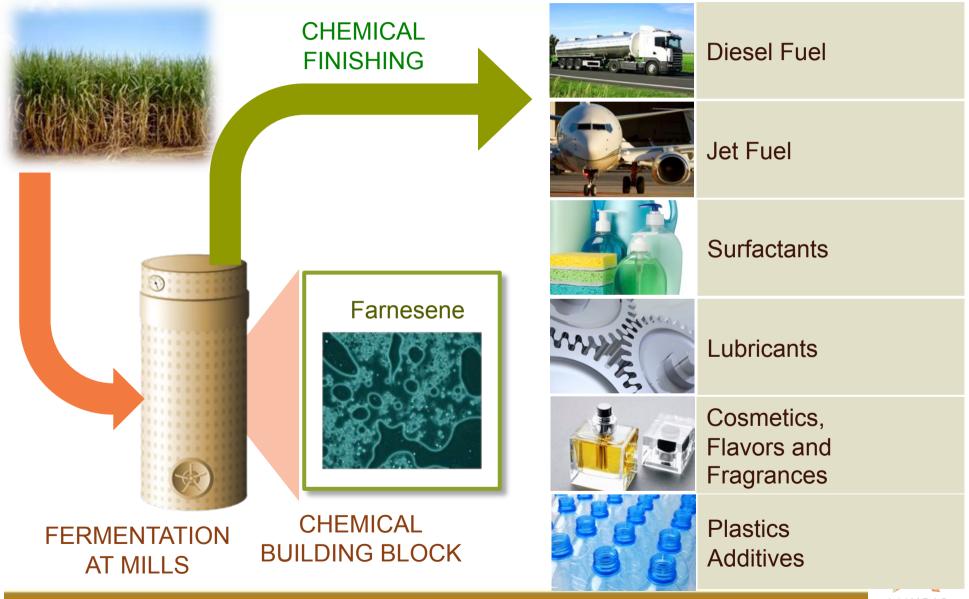


Agenda


- Corporate Overview
- Technology
- Renewable Products Diesel de Cana
- Manufacturing and scale-up
- Cost of Amyris Diesel

Platform Delivers Multiple Products

Engineered Microbes Convert Sugar to Hydrocarbons



Agenda

- Corporate Overview
- Technology
- Renewable Products Diesel de Cana
- Manufacturing and scale-up
- Cost of Amyris Diesel

Producing High-Value Products through Low-Cost Fermentation

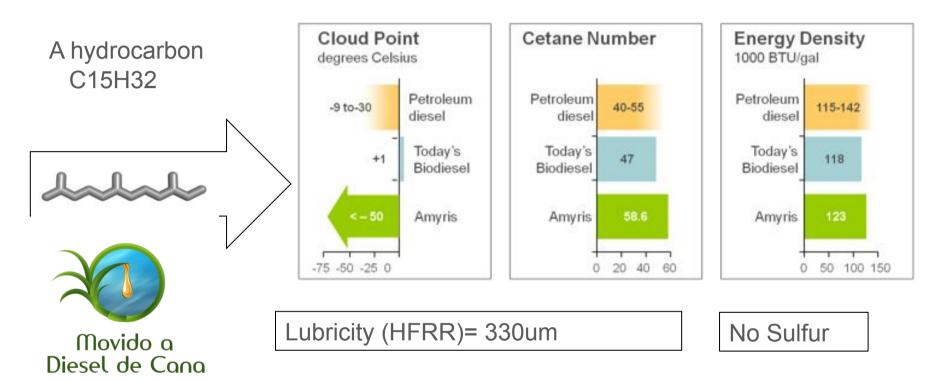
2012 and Beyond – Partners and Customers in Place

AMYRIS BIOFENE® FINAL TESTING IN MAJOR P&G PRODUCT

AMYRIS BIOFENE® IN PET BOTTLES

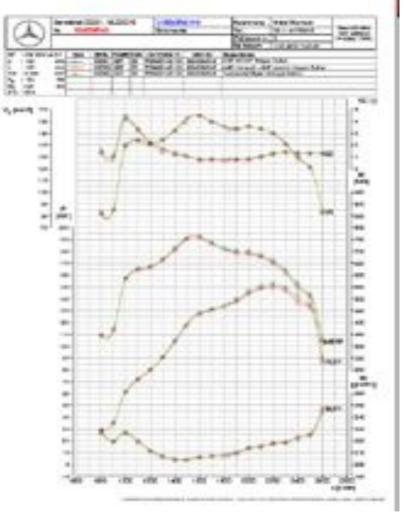
AMYRIS DIESEL WINS INTERNATIONAL COMPETITION

AMYRIS JET FUEL SELECTED FOR TEST FLIGHT



Diesel de Cana: a fuel with "drop in" properties...

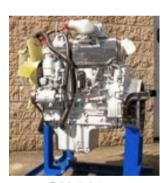
Blends up to 35% of Sugar Cane Diesel are approved for commercial use in the United States.


Amyris diesel will be used in blends with conventional fuels; values shown for Amyris diesel is for our biomass derived blending component

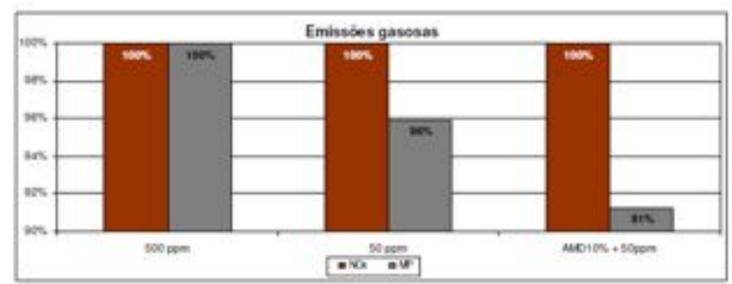
Performance – Mercedes OM 924 (Brazil)

Fuel: Sugar Cane Diesel 10% + Diesel Euro III + 4% Biodiesel

- No performance difference between Sugar Cane Diesel, Diesel S500 and ANP32/2007
 - Torque
 - Power
 - Fuel consumption (BSFC)
- Engine control parameters were not affected by the use of the blend.



Emissions on a Mercedes OM 924 engine


10% Sugar Cane Diesel + Euro III Diesel + 4% Biodiesel:

- 9% reduction in Particulate Matter emissions, when compared to 500PPM sulfur Diesel .
- No changes observed on other regulated gasses.

OM 924

Teste de Frota São Paulo

Frota:

- 3 10% AMD + Diesel B S50 (5% Biodiesel)
- 3 Diesel B5 S50 (5% Biodiesel) para referência

Teste de Frota SPTrans

Movido a Diesel de Cana

Km acumulada esperada:

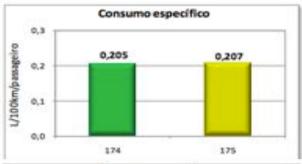
• 100.000km

Parâmetros a serem monitorados:

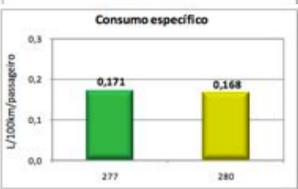
- Consumo de combustível/óleo lubrificante
- Contaminação óleo
- Emissões (Opacidade)
- Durabilidade dos componentes de motor e veículo
- Performance dos veículos (percepção de motoristas)
- Características de manuseio do combustível (transporte, mistura & armazenamento)

Duração prevista:

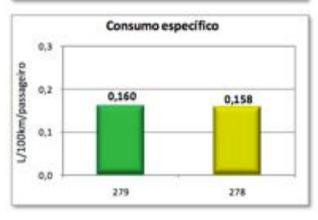
• 6 meses (Julho – Dezembro 2010)


Local:

• Região Metropolitana de São Paulo em rotas representativas.



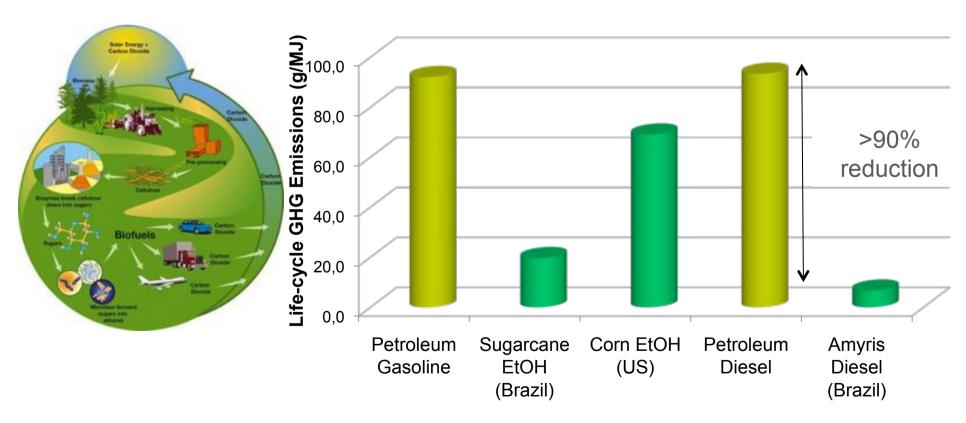
Teste de Frota SPTrans – 10% Diesel de Cana (resultados Intermediários = 3 meses)



Com redução em Opacidade..

Sem impacto em Consumo

e Operação Idêntica



■277 Cana O500 U ■280 Fdssil O500 U

Amyris Diesel shows a reduction in GHG's, even vs. sugarcane ethanol...

Agenda

- Corporate Overview
- Technology
- Renewable Products Diesel de Cana
- Manufacturing and scale-up
- Cost of Amyris Diesel

Production Process – Conversion of Existing mills

The "Crush"

Fermentation

- Engineered veast
- Modified fermenters

Purification

 Inexpensive process to remove lowlevel impurities

Dehydration

 This stage not required because hydrocarbons separate easily from water

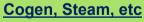
Biomass Processing (Mouth)

Fermentation (Stomach)

Purification (Stomach)

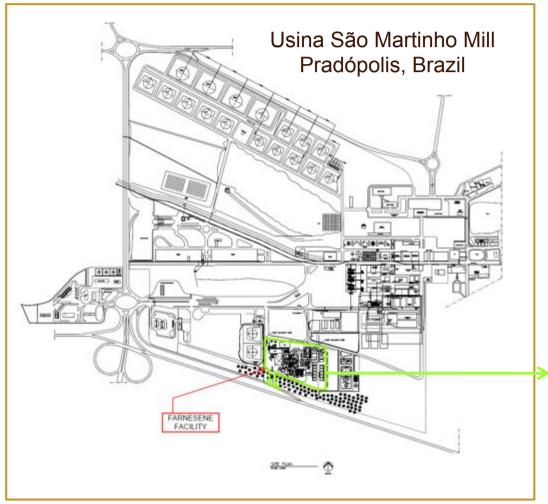
vdrat on Ston

Cellulose Processing (Muscle)


Production and Purification

Chemical **Finishing**

Finishing


 Chemical step converts precursor into fuel

Amyris "Capital-Light" Industrial-Scale Production

"Bolt-On" Investment

Production timeline

2009

R&D center inaugurated in Campinas, Brazil

Q2: Brazil pilot plant operational; selected **EPCM** and commenced commercial plant engineering & design

Q3: Brazil Demo Facility operational

Q4: Signed agreements with Brazilian mill owners for feedstock and production access

2010-2011

Begin conversion of first mill to produce Amyris renewable products

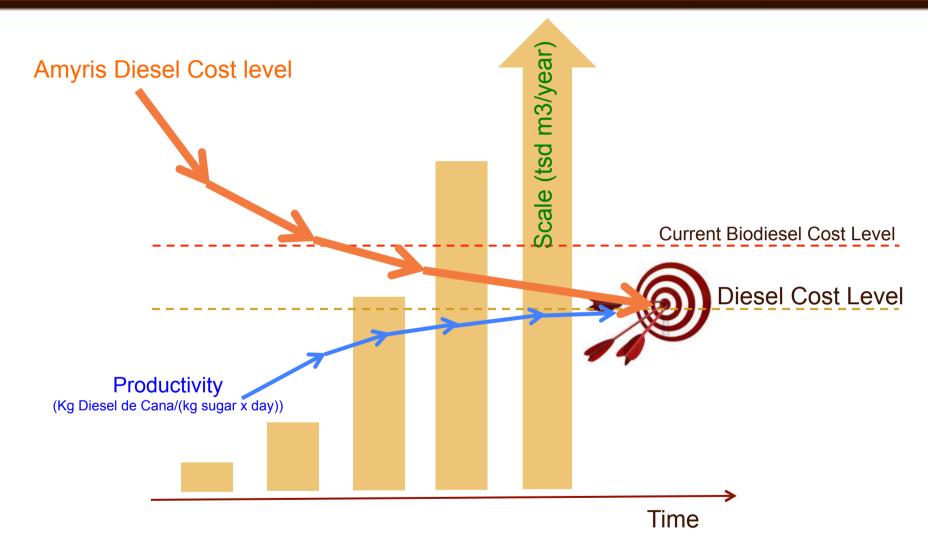
2012

First large scale production of Amyris renewable products at first mill

Continue mill conversion and expansion at other mills

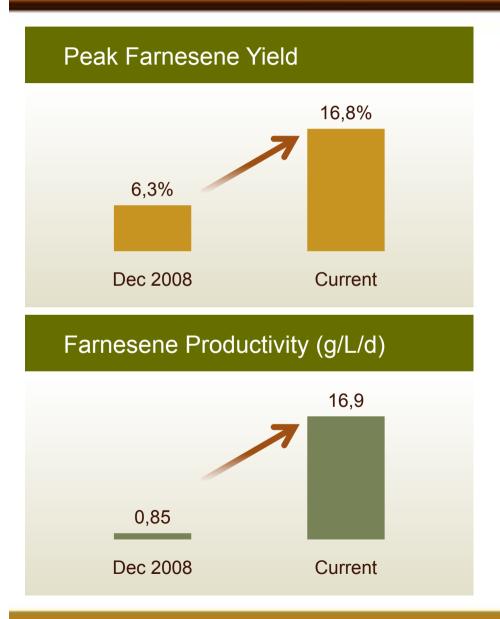
2013

First commercial production by third party mills

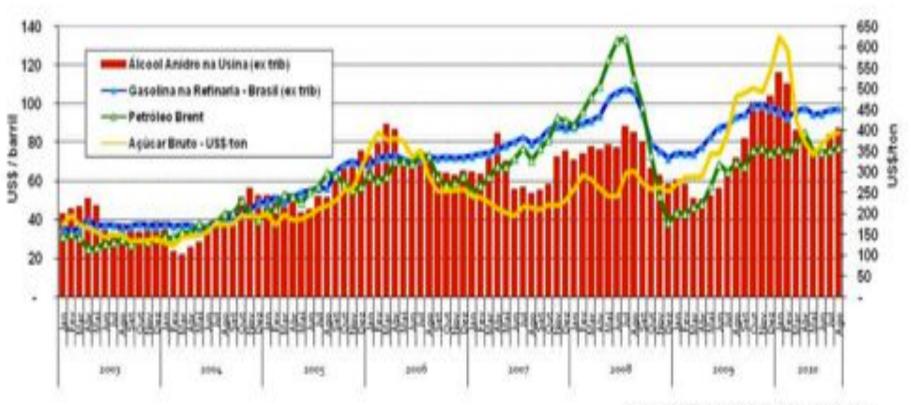


Agenda

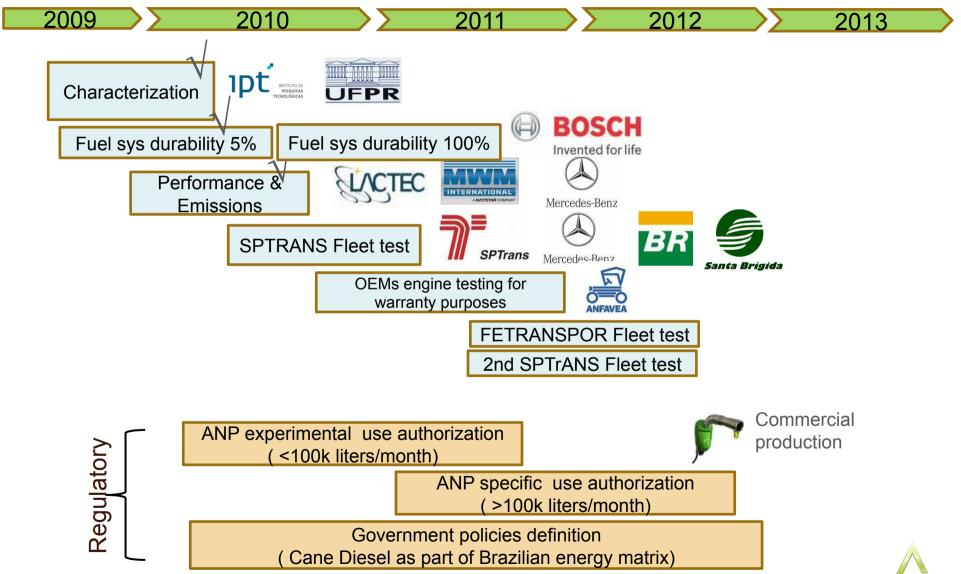
- Corporate Overview
- Technology
- Renewable Products
- Manufacturing and scale-up
- Cost of Amyris Diesel



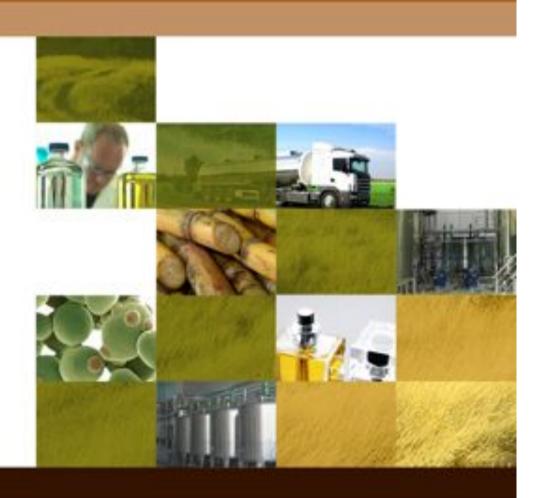

Path to competitiveness...


A Track Record of Lower Production Costs

Cost dinamics similar to Ethanol - Feedstock is the main driver!


Etanol: Evolução de Preços do Açúcar e do Petróleo em Relação ao Etanol

Forte: ESALQ, Platt's, Boletim Flextrading


Brazilian AMD Certification Process

Thanks !!

Adilson Liebsch liebsch@amyris.com

Atendimento à especificação 1/3 (Puro)

Propriedade	Unidade	Método	Legislação Brasileira*	100% Amyris (IPT)	Euro III (IPT)
					· · ·
Água e sedimentos	% vol	ASTM D1796-02	≤0,05	<0,05	< 0,05
Aspecto		CMQ-LCL-PE-083	Límpido isento de impurezas		
Cor		CMQ-LCL-PE-083, ASTM D 1796-02	Vermelho	incolor	Vermelho
Cinza	% mass	ASTM D482-07	≤ 0,01	<0,01	< 0,01
Corrosão	3hr at 50°C	ASTM D130-04E1	≤1	1a	1a
Destilação	°C	ASTM D86-07A			
50%			245-310	245	272
85%			≤360	245	320
Enxofre total	mg/ kg	ASTM D5453-06	≤ 500/2000	< 10	177,5 ± 2,1
Índice de Cetano		ASTM D4737-04		84	56
		ASTM D976			
Massa específica	20C kg/m ³	ASTM D4052-96(02)e1	820-865	768,7 ± 0,07	831,9
	15.56C API	ASTM D4052			
Ponto de fulgor	°C	ASTM D93-07	≥ 38	103,5 ± 0,7	$64,5 \pm 0,7$
Viscosidade cinemática a 40°C	mm²/s	ASTM D445-06	2-5	2,31	3,14
Numero de cetano		ASTM D 613	≥42	53,2 ± 0,9	$52,5 \pm 0,9$
Lubricidade	μ	ASTM D6079	≤ 460	332 ± 63	281 ± 63

^{*} Resolução ANP Nº 15, de 17.7.2006 - DOU 19.7.2006

Atendimento à especificação 2/3 (Misturas)

Propriedade	Unidade	Método	Legislação Brasileira*	5% AMD/95% Euro III (IPT)	20% AMD/80% Euro III	5% AMD/5% BioD/90% Euro III
Água e sedimentos	% vol	ASTM D1796-02	≤0,05	<0,05	< 0,05	<0,05
Aspecto		CMQ-LCL-PE-083	Límpido isento de impurezas			
Cor		CMQ-LCL-PE-083, ASTM D 1796-02	Vermelho	Vermelho	Vermelho	Vermelho
Cinza	% mass	ASTM D482-07	≤ 0,01	<0,01	< 0,01	<0,01
Corrosão	3hr at 50°C	ASTM D130-04E1	≤1	1a	1a	1a
Destilação	°C	ASTM D86-07A				
50%			245-310	267	262	272
85%			≤360	314	312	322
Enxofre total	mg/ kg	ASTM D5453-06	≤ 500/2000	160,5 ± 6,4	151 ±1,4	166,5 ± 0,7
Índice de Cetano		ASTM D4737-04		56	59	56
		ASTM D976				
Massa específica	20C kg/m³	ASTM D4052-96(02)e1	820-865	828,8	819,4	830,8
	15.56C API	ASTM D4052				
Ponto de fulgor	°C	ASTM D93-07	≥ 38	66,5 ± 0,7	72,5 ± 0,7	70
Viscosidade cinemática a 40°C	mm²/s	ASTM D445-06	2-5	3,09 ± 0,01	2,95 ± 0,01	3,16 ± 0,01
Numero de cetano		ASTM D 613	≥42	52 ± 0,9	51,9 ± 0,9	52,3 ± 0,9
Lubricidade	μ	ASTM D6079	≤ 460	343 ± 63	338 ± 63	177 ± 63

^{*} Resolução ANP N 15, de 17.7.2006 - DOU 19.7.2006

Atendimento à especificação 3/3 (Misturas)

Propriedade	Unidade	Legislação Brasileira*	5% AMD/95% Euro III	16%AMD/96% Diesel B5 550	20% AMD/80% Euro III
Âgua e sedimentos	% vor	s 0.06	<0.06	0.06	< 0.05
Aspecto Cor Cruza	2 23723	Limpido isento de impurezas	n.a.	Limpido isento de impurezas	n.a.
Cor		Vermelho	Vermelho	2,0 (Vermetho)	Vermelho
Onza	% mass	≤ 0,01	<0.01	< 0.01	< 0.01
Corrosão	3hr at 50°C	11	ta	1a	ta
Destilação	- C	2000.0	22.22	17000	2000
50%		245-310	267	270	262
85%		€ 360	354	340	312
Ensofre total	mg/kg	s 500/2000	160.5 a 6.4	na.	151 x1.4
		máx. 50	0.0.	15	n.a.
Número de Cetano Derivado**			50	50	51,3
Massa específica	20°C kg/m ³	820-865	628.8	833	819,4
Ponto de fulgor	°C	> 36	66,5 ± 0,7	71	72,5 ± 0,7
Viscosidade cinemática a 40°C	mm'/s	2.5	3.09 ± 0.01	2.92	2,95 a 0,01
Numero de cetano		2 42	52 ± 0.9	51,9 ± 4,3	51.9 ± 0.9
Lubricidade	- W	± 460	343 + 63	140	338 + 63

^{*} Resolução ANP N* 15. de 17.7.2006 - DOU 19.7.2006

^{* &#}x27;Dados Lacaut